3 research outputs found

    The use of novel mechanical devices for enhancing the performance of railway vehicles

    Get PDF
    Following successful implementation of inerters for passive mechanical control in racing cars, this research studies potential innovative solutions for railway vehicle suspensions by bringing the inerter concept to the design of mechatronic systems. The inerter is a kinetic energy storage device which reacts to relative accelerations; together with springs and dampers, it can implement a range of mechanical networks distinguished by their frequency characteristics. This thesis investigates advantages of inerter-based novel devices to simplify the design of active solutions. Most of the research work is devoted to the enhancement of vertical ride quality; integrated active-plus-novel-passive solutions are proposed for the secondary suspensions. These are defined by different active control strategies and passive configurations including inerters. By optimisation of the suspension parameters, a synergy between passive and active configurations is demonstrated for a range of ride quality conditions. The evidence of cooperative work is found in the reduction of the required active forces and suspension travelling. This reveals a potential for reducing the actuator size. Benefits on power requirements and actuator dynamic compensation were also identified. One of the strategies features a nonlinear control law proposed here to compensate for 'sky-hook' damping effects on suspension deflection; this, together with inerter-based devices attains up to 50% in active force reduction for a setting providing 30% of ride quality enhancement. The study is developed from both, an analytical and an engineering perspective. Validation of the results with a more sophisticated model is performed. The lateral stability problem was briefly considered towards the end of the investigation. A potential use of inerter-based devices to replace the static yaw stiffness by dynamic characteristics was identified. This leads to a synergy with 'absolute stiffness', an active stability solution for controlling the wheelset 'hunting' problem, for reducing the creep forces developed during curve negotiation

    Novel mechatronic solutions incorporating inerters for railway vehicle vertical secondary suspensions

    Get PDF
    This paper discusses the effects of inerter-based passive networks in the design of novel mechatronic solutions for improving the vertical performance of a bogied railway vehicle. Combinations of inerter-based structures and active suspensions comprise distinct novel mechatronic solutions for the vertical secondary suspension of the vehicle. The parameters of the active and passive parts of the overall configuration are optimised so that a synergy arises to enhance the vehicle vertical performance and simplify common mechatronic suspension design conflicts. The study is performed by combining inerter-based suspensions with well-established active control (output-based and model-based) strategies for ride quality enhancement. Also, a novel nonlinear control strategy, here called Adaptive Stiffness, is incorporated for suspension deflection regulation to complement the well-known local implementation of skyhook damping. This would complete a significant set of control strategies to produce general conclusions. The vehicle performance is assessed through the vertical accelerations of the vehicle body as an initial investigation. Attained results show the potential of the inerter concept for innovating mechatronic technologies to achieve substantial improvements in railway vehicle vertical ride quality with reduced actuator force

    Passive suspensions for ride quality improvement of two-axle railway vehicles

    Get PDF
    The aim of this paper is to investigate the possibility of improving the ride quality of a two-axle railway vehicle with a single-stage suspension by means of passive suspensions employing an inerter device. The inerter is a mechanical one-port element that is analogous to a capacitor in electrical circuits. The goal is to improve the ride quality in both the vertical and lateral motions in response to track irregularities. Performance benefits for several simple passive suspension layouts are demonstrated and compared with the conventional scheme. The elastic effects of the damper and inerter device are then taken into consideration for practical purposes. The optimum parameter values of the damper, inerter and the parameters representing the elastic effects provide guidance for mechanical design purposes
    corecore